Preconditioning of Carbon Monoxide Releasing Molecule-derived CO Attenuates LPS-induced Activation of HUVEC
نویسندگان
چکیده
OBJECTIVE To investigate the effects and potential mechanisms of preconditioning of tricarbonyldichlororuthenium (III) dimer (CORM-2)-liberated CO on LPS-induced activation of endothelial cells (HUVEC). METHODS HUVEC were pretreated with CORM-2 at the concentration of 50 or 100 microM for 2 hrs, washed and stimulated with LPS (10 microg/ml) for additional 4 hrs. Activation (oxidative stress) of HUVEC was assessed by measuring intracellular oxidation of DHR 123 or nitration of DAF-FM, specific H(2)O(2) and NO fluorochromes, respectively. The expression of HO-1, iNOS (Western blot) and ICAM-1 (cell ELISA) proteins and activation of inflammation-relevant transcription factor, NF-kappaB (EMSA) were assessed. In addition, PMN adhesion to HUVEC was also assessed. RESULTS The obtained data indicate that pretreatment of HUVEC with CORM-2 results in: 1) decrease of LPS-induced production of ROS and NO; 2) up-regulation of HO-1 but decrease in iNOS at the protein levels; 3) inhibition of LPS-induced activation of NF-kappaB; and 4) downregulation of expression of ICAM-1, and this was accompanied by a decrease of PMN adhesion to LPS-stimulated HUVEC. CONCLUSIONS Preconditioning of CO liberated by CORM-2 elicited its anti-inflammatory effects by interfering with the induction of intracellular oxidative stress. In addition, it also supports the notion that CO is a potent inhibitor of iNOS and NF-kappaB.
منابع مشابه
Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice.
Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute inflammation. In this study, we assessed the role of CO liberated from a systemically administered tricarbonyldichlororuthenium-(II)-dimer (CORM-2) on modulation of liver inflammation during sepsis. Polymicrobial sepsis in mice was induced by cecal ligation and perforation (CLP). CORM-2 (8 mg/kg iv...
متن کاملEffect of Carbon Monoxide-Releasing Molecules II-liberated CO on Suppressing Inflammatory Response in Sepsis by Interfering with Nuclear Factor Kappa B Activation
Sepsis continues to be a challenge in clinic. The rates of mortality in sepsis patients remain high. The present study aimed to investigate the effects and the underlying mechanisms of carbon monoxide-releasing molecules II (CORM-2)-liberated CO on suppressing inflammatory response in sepsis. It was shown that treatment of septic mice with CORM-2 attenuated PMN accumulation, downregulated cytok...
متن کاملSuppressive Effect of CORM-2 on LPS-Induced Platelet Activation by Glycoprotein Mediated HS1 Phosphorylation Interference
In recent years, it has been discovered that septic patients display coagulation abnormalities. Platelets play a major role in the coagulation system. Studies have confirmed that carbon monoxide (CO) has important cytoprotective and anti-inflammatory function. However, whether CO could alter abnormal activation of platelets and coagulation and thereby reduce the incidence of mortality during se...
متن کاملCoadsorption of Dioxygen and Carbon Monoxide on a Mg(100) Surface
The activation of carbon monoxide by oxygen on Mg(100) surface has been investigated by X-ray photoelectron spectroscopy (XPS). Carbon monoxide is only weakly adsorbed (dispersion-type forces) on a magnesium surface. The XPS result has shown that the dissociation of carbon monoxide leading to the formation of a metastable surface carbonate species occurs through the participation of an oxyg...
متن کاملHeme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo.
We examined our hypothesis that heme-oxygenase-1 (HO-1)-derived carbon monoxide (CO) inhibits the release of high-mobility group box 1 (HMGB1) in RAW264.7 cells activated with lipopolysaccharide (LPS) in vitro and in LPS- or cecal ligation and puncture (CLP)-induced septic mice in vivo, so that HO-1 induction or CO improves survival of sepsis in rodents. We found that pretreatment with HO-1 ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Biological Sciences
دوره 4 شماره
صفحات -
تاریخ انتشار 2008